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1. INTRODUCTION

Modern electronic systems must frequently operate in hostile electro-

magnetic environments dominated by unwanted signals. The unwanted signals

are referred to as interference whether or not they cause unacceptable

system performance. Undesirable electromagnetic interactions can occur

between different 1) systems, 2) subsystems within a system, 3) equipments

within a subsystem, and 4) components within an equipment. Electromagnetic

compatibility (EMC) exists when, even in the presence of the unwanted signals,

the equipments, subsystems, and systems perform together in an acceptable

manner. In other words, if unintentional electromagnetic radiations and/or

responses do not sufficiently degrade system performance, EMC is said to

apply. On the other hand, electromagnetic interference (EMI) results when

acceptable performance is prevented because of the interfering signals.

The term, interference, is seen to have a dual meaning because it refers to

both the unwanted signals and their effect.

In order to determine acceptable performance, a performance criterion

is needed which provides a standard, rule, test, or measure for judging

quality of operation. Depending upon the specific application and the type

of system, subsystem, or equipment involved, different criteria are appro-

priate. Several examples are cited below. In speech communication systems,

where intelligibility is the important factor, two widely used criteria are

articulation score and articulation index. In television and graphics dis-

play systems, resolution is often chosen as the performance criterion. Bit

error rate and probability of error are commonly used criteria in digital

communication systems. Performance criteria used in analog data systems

are mean square error, peak error, and average absolute error. With respect
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to radar systems, the probability of detection for a specified false alarm

probability is a frequently used criterion. In every case, once a perfor-

mance criterion has been chosen, acceptable performance can be specified by

selecting an allowable range of values for the performance criterion. This

range is usually based upon mission requirements.

In the evaluation of system performance, the desired and interfering

signals are usually characterized in terms of convenient parameters such

as average power, peak amplitude, energy, and peak power. The EMI performti-e

curve is a plot of the selected performance criterion versus some function

of the desired and interfering signal parameters. For example, in Figure 1

AS(in %)

100- ----
PO- EMC
60

EMI PERFORMANCE THRESHOLD

-30 -24 -18 -12 -6 0 S (in dB)

Figure 1 EMI performance curve for a .npeech comi',nicat ion
system.
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is shown a typical EMI performance curve for a speech communicatlon system.

For this system the performance criterion selected is the articulation score,

AS, which gives the percentage of words correctly interpreted in a listener

panel test. The average desired signal power, S, and the average interfering

power, I, are the desired and interfering signal parameters suitable for this

plot. The EMI performance curve consists of a plot of the articulation score

versus the signal-to-interference ratio, S/. Use of the signal--to-interference

ratio implies that performance is independent of the absolute levels of S and

I. Rather, it is their ratio which determines the amount of intelligibility.

As would be expected, the articulation score is seen to be an increasing

function of the signal-to-interference ratio until, for large el,ough values

of S relative to I, essentially perfect intelligibility is achieved.

Given the EMI performance curve, it is possible to specify the range

of operation over which acccptable performance occurs. The performance

threshold is that value of the performance criterion which demarcates the

Legions of acceptable and unacceptable pertormance. These regions, of coir e,

cre determined in accordance with mission requirements. By way of example,

the performance threshold in Figure 1 has been set at an articulation score

eqoal to 60%. This implies, for the application of interest, that Ecceptable

performance results when the articulation score is greater than or iqual to

60% while scores less than 60% yield unacceptable performance. To put it

another way, EMC exists provided AS > 60% while EMI prevails when AS < 60%.

Given the EMI performance curve and numerical values for the performance

threshoid and the desired signal parameter, it is possible to specify the

level of interference above which EMI exists. For example, with respect to

Figure 1, S/1 equals -18 dB at the performance threshold. Therefore, when
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S = -10 dgm, interference with average power greater than 8 dBm iroduces EMI.

On tih other hand, with S - -10 dBm, EMC exists when I < 8 ,Bm. By dcfinition,

the susceptibilty level, L, is the level of the interfering signal that

results, for a specified desired signal, in operation at the performance

threshold. Although the numerical value of L depends upon the de-.ircd

signal,the susceptibility level is primarily a characteristic of the z;'s,.or,

subsystem, or equipment involved. Returning to the example of Figure 1,

assume S = -10 dBm. The corresponding susceptibility level is given by

L = 8 dBm. However, an improved design of the speech comrti,ntion  vste::

of figure 1 could result in the susceptibility level bejn: increare2 to a

value greater than 8 dBm when S = -10 dBm.

It is important to recognize that EMI performrnce curveo; are a fLuct ionl,

of the type of interference encountered. For example, given an iM co,..:aJ--

cations receiver, separate EMI performance curves apply to the di1c.tt e..

of AM, FM, and pulsed radar interference. Although a complete set of ]'XI

performance curves does not exist, many curves have been gen,2rated for s&',r

types of communications rfoeivers under a wide variety of intorferine ,i.i, .

Having introduced the concepts of EMI performance curve. perle r.n,

threshold, and susceptibility level, attention is now focus:d on -YC 1:oI i:1-

and analysis. Historica Iy, approaches to this problem pr ocQeded I mr a

deterministic point of view in which the signals, coupling paths, ad cliin-

ncnt characteristics are, assumed to b- known. Uncertainti es were ac:eunt e

for by utilizing "worst-case" model.S. However, many m . -n loot ', ""c't ic

environments and electronic equip,, ,a\ ecome F1 :O11) LCx ,tL _e no longr

can be modeled either realistically or efficiently using a determinist ic
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approach. This is particularly true of equipments containing microelectronics.

In particular. digital circuits are currently being designed with the latest

integrated circuit technologies where hundreds and even thousands of active

devices are fabricated on tiny silicon chips. The resulting circuits are

so complicated they cannot be analyzed, or even simulated on a computer, in

order to determine their EMI performance.

In recent years macro models have been introduced for simulating com-

plicated circuits. Ideally, the behavior of the macro model closely approx-

imates that of the original circuit even though the macro model employs

significantly fewer active devices. Limited success has been achieved thus

far. For example, EKI in an operational amplifier containing 25 transistors

has been successfully predicted by a macro model employing only 2 transistors.

In addition, macro models are currently being developed for predicting EMI

in simple digital logic circuits.

However, the electromagnetic environment and equipment susceptibility are,

in reality, random in nature. By utilizing a probabilistic approach, statistical

macro models can be developed which simplify the problem of characterizing

complicated signals and circuits. In such an approach, detailed circuit

models are replaced by statistical models where probability density functions

are used to evaluate probabilities and statistical averages associated with

the response. Following the lead of Dr. Capraro of Rome Air Development Center

(21, this report proposes and analyzes a probabilistic EMC model which is

useful when the deterministic approach to EMC modeling and analysis is

in-appropriate. Additional material relevant to this work can be found in

the paper by Bossart, Shekleton, and Lessard (3].
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2. TIE PROBABILISTIC MODEL

For simplicity, consider the EMC problem illustrated in Figure 2

where both a desired signal, s(t), and an interfering signal, i(t), couple

Desired S 2gnal Source C Coul in th

i n t 
E q u i p m e n 

t

i~t
Interferin g S i gna l _ _ i

Source P Coupling path

Figure 2 A simple EMC problem.

into an equipment. If the desired signal is to convey information, it must

be unpredictable. In fact, according to information theory, the information

content of a signal increases with its uncertainty. Unpredictability in the

desired signal is also introduced by the coupling path. Typically, the re-

ceived signal, s(t), must be distinguished from the transmitted signal, d(t).

For example, unpredictable signal distortion may arise when the attenuation

and phase characteristics of the coupling path are unknown. Also, the trans-

mitted signal may undergo fading, whereby the received signal amplitude is
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found to fluctuate in a random fashion. In addition, additive noise may be

introduced in the coupling, path so that the received signal actually consist

of the sun of signal plus unknown noise. In the probabilistic approach, un-

certainty i n the desired signal is incorporated by treating S(t) as a sample

funct ion from a random process.

The interfering signal may enter the equipment directly through the input

port. It may also penetrate the equipment indirectly by coupling on to cabl'.s

such as power lines or by propagating through apertures in the case. As with

s(t), the interfering signal i(t) is likely to be unpredictable. Some of the

uncertainty may be due to the transmitted signal, j(t), also being an infor-

mation bearing signal. Additional uncertaint may be introduced by the

coupling path. Finally, the mechanism by which i(t) enters the equipment m2.x

not be completely known. This is especially true when the interfering signal

couples onto wires or cables and/or through apertures. As a result, i(t) is

also trea.ted in the probabilistic IMC model, as a sample function from a

random process.

The final uncertaint>, arising in the EMC problem is associated with the

equipment itself. It is not possible to manufacture "idet:tical" resistors,

diodes, transistors, etc. having precisely the same parameter values. Porasitic

elements, whose values cannot be controlled, may play an important role in

an equipment's behavior. The positioning cf wires and cables may differ from

one "identical" equipment to another. Also, equipments are apt to age differ-

ently. Therefore, it is highly unlikely that the EMI poi formancc curves of

"identical" equipments will be identical. This is illustrated in Figure 3

where the EMT performance curves for many "identical" speech communication
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AS( in0%)

80o- ETM
60 C /

PERFORMANCE THRESHOLD

20 EM

-30 -24 -18 -12 -6 0 6 d B)
.I.

Figure 3 EMI performance curves for miny "identical" spccech
communication s'sterms subjCcced to t'1 same desire

and interfering signals.

systems are shown. As in Figure 1, the selected performance criterik n j ;

art iculation score which is plotted versus the signal-to-interfereuce t ic,

S/I. In generating Figure 3, it is assumed th.at each equipment is Ucx,,-.Od

to the same electromagneti: environment (i.e., each equipment exp(riLiic,-: the

same desircd and interfering signals). Observe, in Figure 3, that at thc

puforinatice threshold tle signal --to-itcrfcrincc ratio varies from -2d L t'

II



-12 dli. depim ug po titc equipmcnt 1111der test. Consequently, for a givcn

desired sigir.i, there is a 12 (113 variativa in the susceptibility level, L.

For exanhl~IV, whun S =-10 dBin, L ianges front -14 dBm to +2 dci~i. In the

PrObaibillStt ZIc ap1roaC11, thO ulacertainty in the susceptibility level is in-

curpor"ted by tre~atin, L. as a random variable.

In summiar-Y. the probabil istic model proposed for the EMC probleiil of

Fi;gure, 2 is obtaiiucd by treaiLng,

1) thc de!-irod signal, s;(t) , as a samplu function from a random pr.'ck>-,.

2) te in i-faingsignal, i (t) , as a sample function fronm a 17ano

3) the equip' cm t as a sainple froxi an onsenib1*e of rajndoufldi r

"idonL Lal" tecwipments wliose EPH performance curves rxay be chiaracterized in

terins of the ranJ-Em,, s;usce[tibilfty levol, L. For a specified tiesi red sea

L indicates the' 11ininuILM vel of the. finteri %ring signal- albevt which EMc ur

The remainder of thiL; report is devoted to use of the probabil istic

mode-l in determinilug EMC and EMT-
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3. TIlE GIVEN SI(:N.M. AND INT1iRF1R1'ulNC EMI AND EMC PROBABII ITY r',r:CTIO':S

For simplicity in developing the proposud probabilistic EMC model, dis-

cussion is again centered around the simple EMC problem depicted in 'iguve 2.

For ease of discussion, it is asturmed that knc.wledge of only the deired ,.,:i !

interfering signal average powers are requiireid to 6eternine LMI p( fo'rmanL L.

Of course, depending uponthe parLicular problem at hand, knowledge of other

signal parameters such as peak amplitude, energy, or peak power m-ay be rIW..',.

Assume s(t), the desired signal at the equipment, is known, l.et uncc-

tainty in the equipment's EM1 performance curve be character17ed by the re.

susceptibility level, L. (In this report random variables are denoted by

upper case letters while values assumed by the random variabl,,s arc rcpre. ""-

by lower case letters.) Let the average powers of the desired anI intcrfer'

signals be denoted by the random variables S and I, respectively. ¢-iven

S = s, the random variable L equals the average power of the interferii:g si

required to cause the equipment to operate at its performance thre.-lold.

The random behavior of L is governed by its condiLonal cu:,ualat ive di -

tributlon function (CDF) which is denoted by FLIS(Uls). By definition,

FLIS (ls) is the probability, given S = s, that the randon variable 1. is los.

than or equal to the value Z. Symbolically, this is written as

F LISW(s) = P[L < Ls]. (1)

In general, Jt is difficult to theoretically determine the coMitiolal CI)F

of i. Howevcr, it can be obtained empirically thro;,h laboratory measuremant- .

For this purpose, it is necessary to have a large number, N, of "identiC.i

equipments ;ll1 exposed to tile same deired and interfering siglnals. Let NI()
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denote t he numhI)Q of equipments experiunc ing ELI when the average power of the

interfering signal equals ?. The experiMLoent prouccd ; by 1) holding the

desired siignal avrage power at the constant value S s, 2) gradually in-

crua ;ing the average power of the interfering signal, and 3) recording the

value of NEMI (2). A typical result of the experiment is shown in Figure 4.

NErMI (t )

N

0 t r4 t

Figure 4 Experimental result in measurement of conditional

CDF of L.

Nott, th.it NEM 1 (0) = 0 because k = 0 implies the absence of an interfering

signal. The value of the interference average power at which the first

equipment from the group of "identical" equipients reaches its performance

threshold is given by 0 = Z " As the average power of the interfering signal

is increased, more nnd more e f the equipments experience FMI. Finally, the

Nth and last equipmcnt fium the group of "identical" equipments reaches its

performance threshold when, the interference average power equals ZN' Of cour':e,
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an cquipwLuet's susceptibility level must be less than £ whet) It suffers EMI

with the interference average power equal to some value 9. It follows

that NEMI( )/N is all estimate of P[L < Zjsj. Dividing the ordinate in

Figure 4 by N and smoothing the resulting curve yields an approximation for

the conditional CDF of L, as shown in Figure 5.

FLIS Is)

Figure 5 Approximation to cinditional CDF of L.

The curve in Figure 5 is conditioned on the presence of a desired signal

s(t) whose average power is given by S = s. In general, as different sample

functions from the ensemble of s(t) excite the equipment, the value of S changes

and a family of curves for the CDF of L is generated. A typical family is

showl in Figure 6 where, as would be expected, the susceptibility level is

seen to increase with increasing values of the desired signal average power.
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F11s RIO_ __ - FLS(U1O)

Fus (Is)

VF\s (FIsz

-FLIS (t'IS 3)

S2

Figure 6 Family of conditional CDF's of L.

The conditional CDF of L, FLIS Ws), can be given a second jnterpr2tatio.

Assu ie tac average powers of both the desired and interfering siga)s are kno'w,.

In particular, let S = s and I = i. EMI results when the susceptibility le,'.

is less than the average dowvc of the interfering sigial. Note that

F ,Ls(ils) = P[L < ils] (2)

is the probability that the susceptibility level is less than or equal to i,

given S - s. Hence, FLIS (ils) equals the conditional probability of EMI undcLI thl

circumstance that S = s and I = i. Therefore, FL!S(ils) is referred to as th!

given signal and interference EMI piobabllti function.

On the other hand, EMC exists when the susceptibility level is greater

than the average power of the interfering signil. The Iven s i11 and jlt ,

E1MC prfkalhL function is defined to be

Cs1S W - V( 1, 1 - ,.(st(i.IS (3)

IM L sI I
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By definitJon, Clis(its) is the probability that the susceptibility level is

greater than i, given S - s. Consequently, C 1s (ijs) equals the conditional

probability of EMC under the circumstances that S - s and I - i. Since

Ci(is) is the complement of a CDF, it is a nonincreasing function whose

value ranges from unity to zero with increasing i. A typical plot of the

given signal and interference MC probability function is shown in Figure 7.

Figure 7 Typical plot of conditional EMC probability function.
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4. DERIVATION OF EQUIPMENT EMC IN A RANDOM ELECTROMAGNE.TIC ENVIRONMENT

The given signaland interference EMI and EMC probability functions are

applicable only if the average powers of the desired and interfering signals

are both known. When the equipment operates in a random electromagnetic en-

vironment, S and/or I may not be known. Useful results are then obtained by

performing ensemble averages over the unknown random quantities.

Assume the probability density functions (PDF's) of S and I are denoted

by f s(s) and f (i), respectively. The condir nal PDF of the susceptibility

level, L, is obtained by differentiating the conditional CDF of L with rcspect

to t. In particular,

dFL S(Els)

S di(4)

In general, the conditional PDF of L varies from one value of s to another.

A typical family of curves for fLIS(R[Is) is shown in Figure S. It should be

fus (41 S)

0 , X " . ~ fus (410)...lj

FS ut 8 Family of cond itmoa! I'IW's of L.

. ... .. w -
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noted that L and S are likely to be statistically drcpendent random varilb]e-

even when S and I are statistically independent.

The first case considered is the situation in which S = s i.s knuwn but

I is unknown. Averaging C IS(ils) over all possible values of I, thiire r._,ul-.

Cs(s) = Cis(ils) fI(i)di. (5)

Since

Cls (ils) = P[L > is] = J fLis(Is)dV, (6,

it follows that Cs(s) can be expressed as

Cs(s) = f I S (ks) fI(i)dZ di.

.- i

Given S = s, Cs(s) is the expected probability of EMC obtained by), ave~ragin:. -

over all possible values of the unknown interfering signal average power.

Consequently, Cs(s) is referred to as the given signal EMC probabilit'

function. As implied by the notaticn, Cs(s) is a function of the parti iw i

value of the known desired signal average power.

A second case arises when S is unknown but it is know that I i.

Averaging C1 1S(ifs) over all possible values ufS, we obtain

C(i) = C ClIs(ils) fs(s)ds. (8)
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Substitution of (6) into (8) yields

Cl~i) = IM fL S(zis) fs(s)dZ ds

-f i
= I fL,S(fs)dZ ds

where fL,S(£,s) is the joint PDF of the random variables 1, and S. C (i) is

referred to as the given interference EMC probabilii function. Given I = i,

C (i) is the expected probability of EMC obtained by averaging over all

possible values of the unknown desired signal average power. Analogous to

Cs(s), CI(i) is a function of the particular value of the known interferirg4

signal average power.

Finally, consider the case in which both S and I are unknown. AvcrLaoin:

C1 1S(is) over all possible values of S and I, there re;u.'

C f F Cils(ils) fS. (s,i)ds dI (10)

CO -00

where f (si) is the joint PDF of the random variables S and I. Typically,
S'I

S and I are statistically independent. Then

f Sl(s,i) - f s(S) (I1

Use of (6) and (11) in (10) yields
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C f f CiIs(ils) fs(s) fI(i)ds di

00 -. 0

f f I SIs) fs(s) f(i)d ds di (12)

f FL,S ('s) f I(i) d ds di.

-w -Co i

C is referred to as the EMC probability. It is the expected probability of

EMC obtained by iveraging over all possible values of the unknown desired

and interfering signal average powers. In analogy to the conLept of re-

liability, C is also referred to as the system compatibility.

By definition, the probability of EMI is the complement of the probebility

of EMC. It follows that

1 - Cs(s) = the given signal EMI probability function,

1 - CI(i) - the given interference EMI probability function,

and

1 - C - the expected EMI probability.

To elaborate, given S = s, [1 - Cs(s)] is the expected probability of EMI

obtained by averaging over all possible values of the unknown interfering signTlI

average power. Similarly, given 1 -i, [1 - C IM)] is the expected probabili:y

of EMI obtained by averaging over all possible values of the unknown desired

signal average power. Finally, (I - C) is the expected probability t't EMI

* -- . - -. - - ~ - - - - - -
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obtained by averaging over all possible values uf the unknown desired and

interfering signal average powers.
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5. THE EMI RATI: FUNCTION

The EMI rate function, for a specified desired signal, Is denoted lv

As (i) . By definition, given S = s, A s(i)di equals the prob h iv ] an' eqUi -

ment will experience interference for i < I - + di provided coii: y atil itv

exists with I < i. To be more specific, let A1 and A9 denote the co1,!it i,.1-1

events

AI: equipment experiences EMI with i < I < i + di, SivcnS -

A2 ; equipment does not experinece EMI with I <-I , ,i% S s.

In terms of the events AI and A2 ,

1 A2 , 2

X (i)di = P(A IA ) 1 l"2)

s 12 P(A 2 )

Since, given S = s, the Joint event A IA2 is equivalent t, t'

susceptibility level being in the interval (i, i + di), it , v.t

P(A 1 A2) = P[i L < I + di'S li . .',

In addition, given S = s, the event A 2 is quiv il,,t t, ":, ,

susceptibility level being greater th,:a i. Their l,

P(A2) = C (iKs) = v c (il .

Subsitution of (34) and (15) into (13) vicld

X (i)dI =s 1 - F (i s

, , I I I I * -- Illl~ l l l I I, . . . .. . . . . . ..S " - " - '. .
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Dividing through by di, we obtain

f iIs) dF ( s)

ML IS di
s Y - LIS(i s) - I 'LsIs)

Making the change of variables i = Z in (17) and rearranging terms, the

differential equation for F LIS(Qis) becomes

dFL [S(0 s )
S ( -s + Xs() F (qjs) 0 (). (18)

d1S, s L!S s

Because no interference results when the interfering signal average power is

zero, the associatod initial condition j.-,

F (s)=O. (

LIS /

The resulting solution of the differcntial equation for FL; S(%Js) is ti-vn i

91F S) 1 e-l foAs ( u ) d u  (
F I(9 0 s (20.

The complement of FLIS(qIS) is ( il(s). Hence,

C ls(ils) = I - FLIS(ils ) = e (21)

Observe that knowledge of the EMI rat, function A (i) is sufficient to
S

completely derrmine the given signal and interference EMI and E-I C probabil it,'

funCt ions.

The conditional PDF of L, fLIS (ZIs), is also completely determined by
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the EMI rate functic I. Differentlation of (20) with re!,pect to 9. yields

d F X sdu
LS s

fLIS ( t1s )  dX = X (Z) e (22)

This result can also be derived by direct substitution of (21) into (17).

Similarly, substitution of (21) into (5), (8) and (10) results in the ex-

pressions

F _f s (u) du

Cs(s) = e I (i)di, (23)

-w

-Jo I(u)du

C i) = e fs (s)ds, (24)

and

0 1X s (u)du

C= e S f5 (s,i)ds di. (25)

-o -

Assuming statistical independence between S and I, it is readily i con from

(23)-(25) that knowledge of X (i), f (s), and f (i) is sufficient to determii-esS III

fL(ZIS), CI(is), C (s), C (i), and C. Note that X (i) characterizesLIS i!S S I

the equipment while fs (s) and fl(i) characterize the desired and interfering

signals, respectively.

The concepts introduced above are now illustrated by two eximples.

Example 1: Assume S and I are statistically independent uniformly distributvd

- -- -~ -- -- ~
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random variables with PDF's

-- ,0 < s < s

f S(s) 0 
(26)

0), otherwise

and

1 - - 0T- ,0<i<i
fl~i = o(27)

f0 , otherwise.

Also, assume the EMI rate function is given by

s(i) A o(1 -s), (?28)

S 0 S
0

Observe that the EMI rate function is a constant with respect to I but de-

creases linearly with respect to s. It follows that

X (u)du = k Z(l - s ((2)

S0 0

Substitution of (29) into (20) and (22) yields

-X £(l - s)
0 

s

FLIS(.Ws) = 1 - e (30)

and

0 S

f - so )e (31)

The susceptibility level, L, of the equipment is seen to obey an exponential

distribution. Observe that Z varies from 0 to - even thugh the range over
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Eh l i FV,11 , jttI andJ OIL,~ III Ic "IC" 1't prob.11i it 1 1 .m in t .v

CI i S(i (

A sketch of C I S ) I!, shown ill Fi lle 9a. In th, 11- 1,! 1~

CS (iIS) C s(S C1 (e

oo g0 -1-

010 Ii 0 -0 4

(a) (b)

Figure 9 Sketches of a) C 1 1S O's), b) C S (-' al ) C) i

the probability of EMC should eq~ual unity. N.,t, fLh.t

pated. Al so, reficc tin , the fact that t hL' 1LXY I L !111,' tm '

s , ( 11 iso) cqua'zi unity,iupnct of i. ijvLc -4t"

of EMC decreases for increasing Val ucs of tic 1ntcrfer'nct- ivt"r i%,,

g~iven signt 1 EMIC probailit)' function is obt, iled by us. of (27) in,;

(23). Specifc~fallv
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-x_ i(l - _

Cs(S) = e 1i

(33)

S

0 0 S0

X i (1- s- )
0 0 S

0

C s(s) is sketched in Figure 9b. Because the EMI rate function decreas es linonrl%

with respect to s, C S(s) is seen to be an increasing function of s. When

s = so, C(s) 1 1, as was the case with C ls(ils). The given interference

EMC probability function is obtained by use of (26) and (29) in (24). In

particular,

S : -Xi(l - 0 ds

1 oi

e .(3";

0

A sketch of G;T(i) appears in Figure 9c. As would be expected, CI(i) is a

ctcreasriu,, function of i with C1 (O) = 1. By coincidence,

-X i
0 0

I- e
Cs(0) = C = i (35)

0 0

Ccnlsequcnt ly, the EC probability averaged over all possible valI m"; of I, yivA.1
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S - 0, Is identical to the FIC probability averaged over all possible values

of S, given I = i . Observe that S = 0 and I - i represent worst case situations

with respect to the desired and interfering signal average powers, respectively.

Finally, the EMC probability is obtained by use of (26), (27), (11.) .ind (29)

in (25). This yields

-X i(i _s
f f i ds di

0 0 0 0

-1 e di 0 C 1 )d  (36)

= -- X i )

0 0 S

1 -o ds = - o CS(S)ds.

0 xoio(l -- ) o o

0

Unfortunately, a closed form expression is not possible for C. However, a value

for C can be obtained using numerical integration. In. fact, C is nothing mere

than 1/i times the area under C (i) or, equivalently, 1/s times the area
0 10

under CS(s).

Example2: As in example 1, assume S and I are statistically independent uni-

formly distributed random variables with PDF's specified by (26) and (27). "w,

however, let the EMI rate function increase linearly with respect to i. and,

as in example I, decrease linearly with respect to s. Specifically, let

X (i) X i( - --). (37)
s 0 o

0

Observe that
X M(u)du = - 2 (38)

o 0
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Consequently, the CDF and PDF of L are given by
Ao (-s 2-T -2

.. 2

FLIS(ZIs) = I - e 0 (39)

and

-#(l - _) 2
0 o 2

fS(XIs) ,,(1 - 2 -)e (40)

These are recognized as the CDF and PDF, respectively, of the Rayleigh distri-

bution. Following the procedure of example I, it can be shown that

0 1 s i2

C 11S(ils) e 0 (41)

C =(s) erf (o (1 (42)
S A iT~ 0 0 S ~ 2

00

where

t2

1 fx  2

erf(x) = 7 2- dt, (43)

and - o2
c (i) = 2 (1 e .(4)

0
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Once again, a closeo form expre.sion for C does not -xi at A; In .:inp 1 ,

the probability of E'C equals unity in the absence of interfert o, ad/or ,

S = s0 corresponding to a zero EMI rate function. It follows tiiat

C1 1S(O0s) = C11s(i!s 0  L %(b) Co1 (0) , 

as can be verified by exdmining (41) - (44).

Typically, the conditional CDF of the suscvpt ibi lity level , I l,.(

can be determined only by experiment. f IS) tit co(nditional PPF Cl I
LIS ~ Ia~cniinli)

is then found by numerical differentiation. 1lowever, to facilitzate fna,

is convenient to approximate the resulting PDF by a w'ell known diutri.utnr.

many cases, analytical expressions can then be derived for C 1 s) a s

The given signal and interference EMC probability function and thc F2-I r::c

function are tabulated in Appendix A for some commcnly used !'D'3.

Ohb---
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6. THE COMPATIIBILTTY MARG;IN

As mentioned earlier, compatibility exists provided the average power of

thc interferig signal is less than the su.;ccptibility level of the equipment

involved. In some cases, the probability of EMC is more readily evaluated by

introducing the random variable

Y = L - I. (46)

In terms of Y, compatibility exists provided Y > 0. Y also gives the amount

of average power by which thc interfering signal can be increased before EMI

occurs. For this reason, Y is referred to as he compatibility margin. In

this section, expressions are derived for Cs(s), CI(i), and C in terms of the

compatibility margin.

The given signal and interference EMC probability function is defined in

(3) to be

C Is(is) P[L > i!s] = 1 - ELis(ils)

(47)

i LIS (ks)dk.

C lS(ils) has thc following interpretation. Let an equipment be selected at

random from an ensemble of "identical" equipments. Apply to the equipment a

known desired signal with average power S = s and a known interfering signal

with average power I = I. Ci1s(ils) equals the probability of EMC. Alter-

natively, assume the desired and interfering signals with average powers S = s

and I i, respectively, are applied to the entire ensemble of "identical"
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equipments. C 11S (ils) tihn equals the fraction of equipments that are likely

to experience compatibility.

The given signal EC probability function is defined in (5) to be

Cs(s) = r C1S (ius) f (i)di

" ' I fLlS(is)d] fl(i)di (48)

-=a i

f LIS f f I(i)dZ. di.
-O, i

The corresponding region of integrat on is the shaded region, R , shown in

Figure 1a. In R note that .> i .Now introduce into (48) the change of

variable

y £-1 (49)

'AZ_
0 ''R 2  y

(a) (b)

Figure 10 Rv);Ions of tntc gration for C s(s).
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The new region of integration, R2 , in the i-y plane is shown in Figure lOb.

The boundary Z = i in Figure lOa corresponds to the boundary y - 0 in

Figure 10b. Also, the points in R for which Z > i correspond to those in

R2 for which y > 0. It follows that

CS(s) = [ LIS(Y + ijs) fl(i)di]dy. (50)
0 -CO

Assuming statistical indcpendence between the desired and interfering signals,

it is possible to write

f 1 s(ils) = f1 (i). (51)

The expression for CS(s) may then be written as

Cs(s) = [I fLIS(y + iIs) f 1s(its)di]dy. (52)

0 -W

Now consider the random variable Y = L - I. If L and I are statistically in-

dependent, it can be shown that the conditional density function of Y is given

by (41

fyIs(YIS) = f LIS (y + its) f IS(ils)di. (53)

Finally, substitution of (53) into (52) results in

CS(s) f fYIs(Yls)dy. (54)

As anticipated, the probability of EMC given S = s, equals the probability that

the Copa i)lb i I ity ,argfii, Y, is greater than or equal to zero. Cs(s) has the



32

fol lowing Interpretat iun. 1Vet an equipment he ,Ole'cted at random i ,o, ini

ensemble of "identical" equipments. Apply to the equipment a known d ired

with average power S = s and an interfering signal with unknowng vrav, 1)-wcr

C s(s) equals the probability of EMC . Alternatively, assuMe the desi ,I Un

with averaige power S = s and the interfering signal with unknown povwraee 1,,v r

are applied to the entire ensemble of "identical" equipmeant.;. CS(,) t ,.,, :
S

on the average, the fraction of equipments like]y to experience ,oxitiiiitv

when the experiment is repeated many times with the interfering sicTisA ch'o. ,:l

randomly on each repitition of the experiment.

Example 3: Let the conditilonal PDF of 1 be CauLsian with 1:'c;M snd

2
oL . In particular, aasume

( U - s) 2

f LISZIS) 1 e 2(7ZL)
1 2~C

Also, let (i - ml)

2

f1 ) M 2a1 2v 2° 7T, Ic

Hence, the interference average power is also assumed to be G:il ia';s vit :i..,,

2
mI and variance o1. Since average povers are nonnegativc, . and ; FL

assumed to be sufficiently large such that (55) and (56) ar, ncelii .;m,:

for negative values of Z and i, respectively. Direct use of (48) yields

Cs(s) =J f f ( s) f(i)d, di )
S -CO i h'IS

2 (I-mY2

+ -(,

f JO e 2o 2  2ci

"" e tiC j
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The above cxproS~ionl furI C S(s) is not readily uvatuatud. However, as!;urulirig

I to be st;t i ,;t Pal iv indepeident of both S and I., the given sina MC

probabil it fuPnctLion Ca~n be deturr'i-ned from (5/4) where Y 1. - I is t la

bilIity margin. Since L and I aire stat ist ic;'illy independenTI C-1inSasin ln'o

VZ1riLibles , iL f.11lows that Y is a Gausojian ranldOW varialeC withI mean

m~S -in 0?

and vari;Ailce

O2 a2 + )2

'lhoi efore, the (. -ndition:Al PDF of Y is given by

(. - )2

Substituti(I' of (61) into (54) results in

_ 2
c S(s) Jf Y (y~s)dy 1e 20 Y dy.(2

Introducing the chang, of variables

y - m

C)"

(62) becomes 22
z mn z

m~mC V
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whtcrc crf (x) i ; def ied in (43)

The givcn interfercice EMC probab i lity i UtL 10n is def ind in (8) to be

C () = (ils) fs(S)

f [ fiIs( Zs)d]fs(s)(Is (65)

= f f L,S(,s)d' ds.

1he corresponding region of integration is the shaded region, R3, shown in

Figure 1. InLerchaiging the order of integration,

S

0

Figure 11 Re)gion of integration for C (M)

C I(i) becomes

Cl) I [MLs s).sa (66,)
J CO



Ih-wever , the( inar-giiIhl PDF of L is related to) the joint P01' of I and S accorling;

to tlhe itIaion

SobstitoLt ionl Of (67) into (66) yields

where i is the knowni average powor of the inte-rfering signal . Now considor

the rando,u variable

Y =L - 1 (69)

wilere i is reczogniZed Lo be a knov.n constant. The conditional PDF of Y is re-

Ii-ted to the marginal VDUF of L as follows:

f 1 yid -f L (9)dZ. (70)

Hence, the given intterference PIC probability function can be expressed as

C M() f (yli)dy. (71)

Anal(-gOLP; to (54), the probitbility of FKMC, g iven T =i, equals the - robhb iit-:

that the Corpatibilit.s Imat glin, Y , is greater than or equal to zero. C I M) ha's

le ol owinl iii uterj' ret at ion . Let an11 ((I i porn Tt he seIct t random from an)

vnsewi.- of idecnt ira!' equ priienr s. App] v to the -inpmn known iinterfering,

s i,,ia1 will 1 averare powt r T i anld J des ired i nIWit h til known1 ove rage, power.
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C (I) e i al, th prob i I ity of EIM'C . Al ternativ I y, I .': t. tnt r ii,

signal With ,IvLrgL puwer I = i and thc desire'd signal with unknown I'C I,"r

are applied to the entire ensemble of "identical" equipiU.t(s. i) t -..

on the average, the fraction of equipments likely to expericnco c, . ,

when the experiment is repeated many times with the desirc.d ,ia :,

randomly on each repitition of the experiment.

Final]y, assume I to be statistically indpe-ndcnt of both S aid

EMC probability is defined in (12) to be

C j C lS(ils) fS (S) f (i)ds di

--oo - oI-
F F f L 1S ( s)d Z f s ) f i1iM d ,3 i ,

= U LS( ) fl(i)d. ds di.

.CO -00 1

Integrating first with rca:ect to s, C is given by

C = [ fL,S(,s)ds]fi(i) d, di.

Substitution of (67) into (.73) yieldts

C = f (1G (i)d fl di. .

Observe the simlari ty between (74) mnd the last equation in ('8 ). i , '

difference is that the conditional PDF of L appears in (48) wher.,.i:. th. inri
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PDF of L appcar's in (74). Applying the same procedure used to convert (48)

into (54), it follows that

C = fy (y)dy (7-

0

w cze Y = L - I. Oncc again, the probability of IC equal; the probabi!Jty

that the compatibility margin, Y, is greater than or equal to zero. Note that

CS(,;) in (54), C Ci) in (71), and C in (75) usc the PDF's fyIs(YIS), f yll(yK)

-in! fy(y) , respectively. C has the following interpretation. Let an equipmiCr,

be selected at random from an ensemble of "identical" equipments. Apply to

the uquipmcnt desirc-i and interfering signals whose average powers are unkncwn.

C equals the probabJlitv of EMC. Alternatively, assume the desired and iner-

fering signals whose average powers are unknown are applied to the entire

ensemnble ot "identical" equipments. C then equals, on the average, the fra, ton

of cquipments likely to exprrience compatibility when the experiment is repeats..

many times with the desired -rd interfering signals chos;cn randomly om (;:

repitition of the experiment.

Examole 4: As in example 3, all random variables are assumed to be Gaussian.

In particular, the PDF's of fLIS((,'s), fS(s), and fI(i) are approximated V'

(P. - s) 2
- 2

f Is) ] 2o L 2 (7(

(S - mS)2

2
1 2a S 2

( ) . ... e

i , m , , II - " III I I ll I - It II -- II ..... . .. .
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and(i - r!2

2of. U .) . .. .. I ( 7 8 )

Given (7b), (77), and (78), it is des;ired to evaluate C (i) and C using: (71)

and (75), respectively.

The first Step is to determine the marginal PDF of L.. With reference

to (67),

fL() J fL,S(,s)ds. (79)

However,

17 S (U s) = fL IS ( .S) f S(S)

2 (s - m s

e 2 CL2 CS2

a L S

By completing the square in the exponent with respect to s, it can be shown

that

zo S~ _I -1 S2 L20 2 S 2 + 2
0 + 0L + mS°. )

1 L S S + L
iL,(£,s) =
LS 2;To L 0 S

- mS ) 
2

2 2 2
os +0 8

L
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S, i;t i tut ioi o (81) into (79) results in

(I -S) 21 U S2 + C 112  °S 2 + Is 2 2

2 0 2 +r 0 2 2  2 -- 2 2 2
2 2 L S S L OL

fL(0)0= e ds

~~1 (Z - mS)

22

I S

2 2 2
1n, IS +  (2S L

e 2 GS2 +0L2

2 2
S L

Therefore, L is a Gaussian random variable with mean mS and 
variance (oS

2  
C 2).

Since average powers are nonnegative, mS and m are assumed to be 3ufficientl%,

large such that fs (s), fl(i), fL,S (,s), and fL(Z) are negligibly small for

negative values of their arguments.

To evaluate CL (i) by means of (71), it is necessary to determinte f Y 11 W(\i)

where Y = 1, - i and i is a known constant. Since L is Gaussian, the conditionAl

POF of Y is also aussian with mean (in - i) and varianc:e ( S 2 + 2
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Spk,.Cif ica ly

S ty - -
j ) ]

2

2 2 2

f 1 S L (83)

f) -S L2

Applying the same procedure used to evaluate (62), it follows that

0 S + L

where erf(x) is defined in (43).

Finally, to evaluate C by means of (75), it is necessary to determine

fy(y) where Y = L - I. Let I be statistically independent of L. Since L

and I are both Gaussian, the marginal PDF of Y is also Gaussian with mean

(mS - i ) and variance (O S2 + L2 + a i2 In particular ,

1 y -- (ms -m I
) 2

2 2 2 2

f(y) = e (Y))

VTa/S + 3L I + I

Applying the same procedure used to evaluate (62) and (84), it follows that

Sms - m
C fy(y)dy =rf( -(h)

0 lS + aL + 1I

... - " -.. . ... -. .. - I I | ~ll ll
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It is of intcrest to comparc the exprvssicn for C S() in example 3 wiLh tho Le

obtained for C (i) ird C in cxample 4. In each case, the expressions

involve identical functions of the means and variances of f s.)

and f y(y), re.'pectiveiy.

It is not aTVways possible to obtain analytical expressions for C S(s),

C (i), and C, even when well known PD's are specified for fL!( Js), fs(s).

and f (i). Nuweorical int'2gr'tion techniquoq must then be used to cvalutite th

integrals iti (5), (8), and (12) or, equivalently, in (54), (71), and (75 .

To illustrate some cases where analytical expressions are possible,

Cs(s) f CIls(ils) fI(i)di

F Y fyjs(yis)dy (87)

0

is evaluated in Appendix B for some well known PDF's of LIS( )n 1)()"

Consistent with the property that the susceptibility level of an equipment -is

likely to increase as the desired signal average power is increased, -he

conditional PDF's of L are specified in Appendix B such that larger siscepti-

bility levels are more probable with larger values of s. This result, in

C Cs(s) being a nondecreasing function of s.

Knowledge of fy Ys(Ys), fy11 (y Ii) , and fy(y) can provide additi,,,.il in-

sight into CS (s) , C (i), and C, respectively. When certain s'mmetrius in tht

und rty tLg PDF's cxist, generil concl1usions can be de rived conc , , th,,
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probability of EMC. For example, assume fLIS(k 1s) and fI(i) are both sym-

metrical functions about the saime mean m. Therefore, for all x,

fLIS(m + xIs) = fLIS(i - xls) (88)

and

fI(m + x) = fI(m - x) (89)

From (53) tXi. conditional PDF of Y = L - I is given by

f ys(YIS) = ff LIS(y + its) f IS(ils)di

-00( ,)

= fLIS(y + is) fI(i)di

where fIIS(ils) has been replaced with fl (i) by assuming statistical indepvndence

between S and I. Observe that

fYIS(-YIS) fm fLIS(-y + its) f 1 (i)di. (91)

Introduction into (91) of the change of variable

i = m + x (92)

and utilization of the symmetry properties stated in (88) and (89) results il

i s(-YIS) = 'I(s (m + x - ys) + x)dx

(93)

f fLI( - x + yls) fl(in x)dx.

-oo.
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Filal 1 y, with Ltie choi't uLf v.rLible

M - X, (94)

(9-1) be ,,icz,

fYIS(- Y ') f 1 S(y + w! s) f (W)dw

(95f l (v'l,
fYIS

enco, fYs(Ys) is an ven tunct Ioi of y. It fo1lows th,t

Cs(s) J fys(y's) (IV (9r

independent of the particular PDF's for f LIS(ls) and f I() as long as the

conditions in (88) and (89) are satisfied. Similarly, it can be shown that

CI(i) - 1/2 provided fL(Z) is a symmetric function about the mean i. Also,

C = 1/2 when fL(2) and f (i) are both symmetrical functions about the srime

mean m.



'fhus fzir, di scus . ion hia. been rus;t r i teLd Lt heC speCCi I 1 S caeWhere- t I"e

p.er fariaaej~o CIIrve is suhd iv' i L!ed iait o t wo pe~r fo, i~iaiice catCPgo r i C!S bV 3 PV L'

pvrferitaiie t hreshiold , as shIi in Fig;ure . In certa iii app Ileai ions, it L~

be desirable to StibdIivirle the FYI performanco curve into thre, or in. r,, per-

formance categ,,ories. For example, it maY ')e tiSetul to catere ize p.:iti

as either 1) acceptable, 2) marinal, or 3) unicceptablo, as illustrate,! in

FijgUre 12. Vhe 1.YC per foinaae thrvshol d is that value of theer

AS( in c/)

EMC PE RFORMA4NCE60 -MARGINALTHE OL

EMI PERFOrOAMANCE -

20 LJ4ACCEPTA8LE (EMZI I THRESHOLO

LI LC (in dF3)

Figure 12 EMT performance curve of I speech com-,unication jv :tcm TIi\1~

into three performance categories.
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c! iterion whi h dcnMlrcttc tho re ion of acceptable and marginal performance.

S imiir y i, t he MiK ro rma:lce thrc ;hoId is that value of the performance

cr1i rion whi- )- depi.ircaites the regions of marginal and unacceptable performance.

,u. in trie ;iiv'hl thre-shold case, E.C and EMi are said to exist when the per--

,manee i.' acceptable and unacceptable, respectively. By definition, the EMC

>tvile)iil, lve!. , is the Jevel of the interfering s-gnal that results,

for a specif ied desired :.i.nal , in operation at the EMC performance threshold.

In addit ion, the M ! .u_.rt bil I tv level, L, is defined to be the level of

the intrferin, sig,l Llhat results, for a specified desired signal, in operaticin

at the '42 pwrformanct, threshold.

!,I the ruhbii ic a ppnoach, the susceptibility levels, LC and LI , are

treated as n.idu, variablus whose behaviors arc governed by the conditional CDF's

I. S(C IS) P[c < 9.cI (97)

a ild

FI1 (S UIs) = P[LI < Z1 1s]. (98)

i ,o corres)onding Pi)F's are

dF Ils (Zcl)
LCis C dZc (99)

S Y ) 'IF L 1IS (k 1s)

dV.i1
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In the ensuing discussion, it is assumed that performance is degraded as the

average power in the interfering signal is increased. It follows that LC and C1

LI obey the inequality

LC < LI. (101)

EMC exists when the susceptibility level, LC, is greater than the average

power of the interfering signal. Given S = s and I = i, the conditional

probability of EMC is given by

C1ls (is) = P[L C > i, LI > ils]

(102)

= P[L I > il(LC > i),s] P[Lc > ijs].

Because of the inequality in (101),

P(I > il(LC > i), s] 1. (103)

Therefore, (102) simplifies to

C1 1S(ils) = P[LC > its] = 1 - FLCIS(ils)

{ i fLc (Is(z0s)C.)

Ciis(ils) is known as the given signal and interference EMC probabiLity function.

EMI exists when the susceptibility level, I1 , Is less than the average

power of the interfering signal. Given S = s and I = i, the conditional

probability of EMI is given by

U 1 s(i s) = P1,I < 1, 1c < ilsl

(105)
= PtL, i 1(T1 < O),s] 11 [L is].

CA
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Beccaus of the inoqual it y in (101)

P[Ic < i I (L I .< i),s] = . U)

Therefore, (105) simplifies to

U (is) PT1i < ifsl F1  l (ll')

f 

(107)

Ulfs(iis) is known as the given signal and interference EMI probabilitV fui,,t in

Marginal performance exists when the average power of the interferin., si-;!,g.

is greater than or equal to the EMC susceptibility level, LC , but is le';s than

the EMI susceptibill.1y level, L Given S = s and I = i, the conditional

probability of marginal performance is given by

MIIS (ils) = P[LC < i, LI > ifs). (1()6)

However, performance is either acceptable, unacceptable, or marginal. Since

these are disjoint events,

Cl1S(ijg ) + U1 1s(ils) + M 1 1S(ils) 1. (109)

Solving for Mlls(is) and utilizing (104) and (107), it follows that

Mlfs(ils) = 1 - CI 1S(ifs) - UL (is)

I I- ( - Fc (ils)) - is K)

fis fl 1 i

= F ( : 10
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CornpaIrison of (111)-(119) with the corresponding cxpress iAns previously

developed for the single performance tireshold case reveals the two sets of

expressions to be quite similar. It can be shown that this similarity extend,

to the general case for which (n - 1) performance thresholds are used to sub-

divide system performance into n categories.

.. . . . . . . . . . . . ... . . . . " - " : : 7 _: .. . .. . . . .... - - ... .. . -.
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8. SA,"PIEr' SIZE CONID)IAlION ; IN THLE 1IP1L ENTAf., IT!I]MINATION (' F (

Consider, once again, an EMI perforrance curve with a single peri tu l:n,

threshold such as appears io Figure 3. In the probabilistic approach, the IL

performance curve for an equLpment is ch.iracterized in terms of the randm

susceptibility level, L. The random behavior of 1. is governed by it> tonl it ,

CDF, F LIS ( Zs), wiich is defined in (1). An experimental procedure fr de:-

mining FLIS(ZIs) through laboratory measurements was dCscribetd in Section 3.

It was pointed out, for this purpose, that it is necu;s.arv to have a ar,',

N, of "identical" equipments all exposed to the same desired and i: t- I;

signals. In this section, a method proposcd b' Koby n,orev -. A Syi-:

is presented for determining a suitably large value of N.

Denote the empirically obtained conditional CDF of L by EN'Ns, ) "

to 'olnogorov and Smirnov, as long as IS(KIS) is a continuous CDT, thon

N INP[E LIS(Is) - 6 < F LIS ( Is) < ELIS(:Is) + C 'j))

provided

2
N > (a)

where 6 < 0.2 and a is detcriUncd from Table 1 [8].

TABLE I

PARNL:RS USED IN KOEMOLQOROV-SMIRNOV TEST

y 0.80 0.85 0.90 0.95 0.99

1.07 1.14 1.22 1.36 1.63
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N > (fI -. 2 66.15.(K
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Note that " 0.975 dues nult appear iU i ' l, 1. ,:, .qI.. .. it i!s

nc t':;S ary to interpolate between the tabulated value, s. ul. i 1. 3 1, 11 i,! t ;o '1! i ( T,

0.975 - 0.95 0.99 - 0.95
a - 1.36 1.63 - 1.36

Solution of (123) for a yields

(0.025)_(0.27)
a = 1.36 + (0. 7) = 1.53. (124)

(0.04)

Using (121) , the inequality on N becomes

N> (1.53)2= 234. (125)

Therefore, 234 equipments are fooded if, with probability 0.975, F LIS(.Is) is

to be completely contained within the confidence interval of width 0.2 centered

on the empirical CDF.



9. APPROXIMATION 017 F ( fs) BY A WEI1., KNOWN DIST I BITJ, N

When FLS ( i s) is determined in the laborato)ry, it is convenient, for

analytical reasons, to approximate the experimentally obtaincd CDF by a well

known distribution. In general, several different distributions may provide

acceptable approximations to the experimental data. This secrion pro:;Cnts soe

statistical techn. :'es for rejecting candidate di:!tributions which are not

supported by the data.

The procedure consists of two steps. First, two meast'-es which contain

information relative to the shape of a distribution, the coefficionts of

skewness and kurtcsis, are used to make preliminary selections of candidlite

distributions. The candidates are then tested to see whether any should be

rejected on the basis of a significant statistical deviation between the

experimental data and the. distribution being tested. The approximitir.v to

F LISf(s) is chosen from those distributions which passed the test. l1.iwever,

it is not possible to state whether any one distribution which passed the test

is better than any other.

The coefficents of skewness and kurtosis are related to the kth ccntra'

moment of a random variable where k = 1,2,3, . let the c:n of the rmd(:

variable 1. be denoted by mL . The k t - ccntral mocnt of 1. is doefined to he

k  = Ef (L - m l') k 
( .'

where El denotes the statistical operation of .jexectevd vnin',. 1,v dc iii I

pJ33 = coefficilent of skewness (
3 P23/2

p2
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and

4
C 2 coefficient of kurt us ;. (

11 22

The coefficient of s kewnuess is a measure Of the asyuletry of th Il) Tihtu

coefficient of kurtos is is a measure of tie "cakednesS' or ]a ir.;, "

a PDF in the central part of the distribution.

When experimentally determining FL I(2 s), it is ass;umed that I;, ,i

"identical" equipments is exposed to the same desired and interfer in; i ;, ..

As explained in Section 3, the experiment proceeds by I) heidilg, tl) hs;,

signal average power at the constant value S = s, 2) gradual!. \-cr,.;:.

average power of the interfering signal, and 3) recording the ,aiZ I "U 61

where N EMI() denotes the number of equipments experiencing FYI -,.ith th, ar.

power of the interfering signal equal to 2. A typical result Of till ,::s>ri

is shown in Figure 4. Let Z denote the value of the intcrferc.;,c a,':c.,y's

power at which the i t li equipi,,et reaches its performance thresiiold. As. 15 ,

estimator of the mean mL is given by

L NNi= I

Similarly, unbiased estimators of u2, I13$ and 4 are

N 2
-2 1 i -y)

i=l

N N3
- -3(N -l )(N -2) i m,

i1=1
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an't

N2  N 2 6N --9

4 -- , " (Z. - -L
(N- )(IN IN + 3) iL N2 - 3N + 3

GI 3.1)

Usin (130)-(L32) in (127) and (128), estimates of the coefficients (f skewnuc!s

and kurto;ii3 bccole

pt3

"3 =  ( 213/2 (133

and
S -4

4 2

Preliminary selections of some well known distributions for appreximat ins

F IS(91s) are made by comparing the estimates, r3 and ct4 with the kno%,-n val;iws,

a3 and a of the various distributions under consideration. Those distribution-.

for which a reasonable match exists become candidatos for further consideration.

in general, the PDF's of the well known distributions contain two or more pir-

meters for which numerical values must be determined in order for the distri' ,

to be completely specified. These parameters are assumed to be chuse such th.it

the mean and variance of the distribution equal, respectively, the ss-~ple m ,ss

2
mI' and the sample variance, (1 L) = 2 Therefore, with respect to thW mean

and variance, there is no loss in generality by considering the standardized r:hr

var ia! I v

L - m'L ~
°L
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where tIhe vla 'ce Ot 1. i: d(hI1Ottd \' A Vi I t, ir -,

X, ha1is zero mcan a,.l unit V.-i I i anc, I t (.'811 A > ,!luVW t1hat t0.i L,04f i, c:t ,

skewn ss and kurt osis ore i nvariant ndtL r stand: icd at Itn of ti Lati:, i .

In othcr words, the distri but iuns for 1 and X , r::!ct ivy , have t

numerical value-, of a 3 and a 4 . For the purpoSe of co!.pari: ,, the sh :1 t h

various d istr iut ions , it i:; couv n i Cn t to work withi the .t" 1!)ada rd iX.< i" ,

variables. Anal yt ical expr e, ;ions for PDF 's wliose raido:i vr i,blc s h:,, 1)e en

standardized to zero mean and unit variance are tahul.:Ited iii Appni:.ix C .IcnI_,

with their coefficients of skewne.s;s .,n kurtosis.

Having selected a group of possible distributions for aprrn::iatis:.

FL IS( s) on the basis of comparing c, and a with a and r, esp cti,.
LI 4 3 L4

it is then desirable to perform a "goodncss of fit" test on ench candids Lu

distribution. This enables a distribution to bu rejccLed wlon a signii,'.n

statistical daviation exists between the experimenttail data ;ind the dit5ri.rn

being tested. Even though a distribution is not rejected, it cannot Lc ,cce~to:

with confidence. In addition, if several distributions are not rejoLcd, tIe

goodness of fit test cannot be used to accept one dist-ibuti, over another.

The best that can be said regarding di,;tribution,, which pass tlie ten, i t sat

they were not rejected. The goodness of fit test pIrevfits :'!ceit;,,ce .' 'i I*-

bution which 1-; likely to make a poor approximiation to . ,  I

N, the numbier of "idelti ical" equipments (mhp Io\'d in the e p r eriment, 1 . 7tcv7' i

which ood,', of fit test to use. For smal 1 vi os of N ( ie . , , 3,0) tl V

Kotmognrov-Fiiirnov te.;t is; .ncgented. On the. other hand, tie 2 tu-t iI;

preferred wNhai N in, l:ri: (1:.i. , N :- 30).

Case I -. 
1 N (N 0): Once agaio, it is Convenient to work withi :t :,to2:
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di;tributions having zero mean and unit variance. With respect to the data, the

-2 -
sample mean, ilL , is given by (129) while the sample variance, () = 1121 S

given by (130). The experimental data is standardized according to the relation

k - tL

= ; i = 1, 2, .... N. (136)

0L

Denote the CDF of the standardized distribution to be tested by Fx(x). Analytical

expressiois for various standardized CDF's are tabulated in Appendix D.

The Kolmogorov-Smiriov test is presented here without proof. It proceeds

as follows:

1) Standardize the experimental data by ucilizing (136).

2) Obtain ananalytical expression F (x) for the distribution under test,

(Appendix D may be of some value in this regard.)

3) For each experimental data point, evaluate Fx(Xi).

4) Construct an experimental standardized CDF by u3i,'- the relation

P(X < xi) = N (137)
E - 1 N

where N EM(( ) denotes the number of equipments experiencing EMT with the average

power of the interfering signal equal to a value just slightly larger than K.
1

The random variable XL denotes the experimental data. The experimental CDF i

the shape of a staircase function such as shown in Figure 4.

5) Find the maximum distance given by

NEMI (£i+ (
max max] .FX(xi )  Nmax - N(138)
max t. NX'i
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6) A. i'll a ou.'c1 ica I vaI% , t hc cuo! it or , i bdb i t v I. II

is def ikcd to be

OL = P (reject ing distr ibut !on di.;tr ibut ion is a su it iblc p : '.1 , tL

This probability is kno)WnI as the _.nicanee leve of til tc-t

7) Refer to the Table in Appendix E. Find the t iItljt . .1

to the applicable sample size, N, and significance 1I.x'cl, .. ) 't tic

value by D N ,

8) Reject the distribution if D > DC .
max N'

Fxample 7: Assume 10 "identical" equipments are used in the lo:erri:,.'L fu

determining FLIS(ls). The results of the experiment are sulm:l.i:oi, ii ni

The sample mean is given by

10
0- i~ = 1011.1 mnw.(.

...e sample standard deviation is given by

a= [9 . ( - 2 /2 = 68.48 mw.
1=1

Therefore, the standardized data are obtained using

kI - 101i.1

= 68.48

3 4
x is tabulated in Table A along with x, and xi which arc ncded ill e'n:,; 1t

the coefficients of skewness and kurtosis. Since x i. ll zero 11-1!ai! tii ll:i

variance, it
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I I . A

F (x) P(X F x (x '-P(• . i F-,(.. 1 P ×' itxX i -' : • x,

.]28i .4 .0113

L6 b 6 .6

,.7'. .7724 .8 .0270

, - , . .1.., .0723 .1 .02-1

I)7 ., . .i .tVH. '  .4i23 .5 .0b75

t, ,j, 2 . , ... ', ._93 .8979 1.0 .1021

S09. -. 1/1 O0956 .290 .3 .C.1

2. .2S7 .7L88 .7 .0'. 6

9 j9 - ..' - : 4 .942 .0744 .2 .1256

10 0F3 1.t) I .15 8 L216 .8498 .9 OVQ

fo] 1 ,-l , i.at
10

- -(10) x 0.406 (14
3 (9)(8) i 1

and 10

(100) 10 4 (51)(0 . -.... . 1.532. (1 .

4 (9)(73) __ 1 (73)

in Appendix C, thte We ibul I distribution is the only distribution for which

nfegtivLe V\lUCS o' "1 3 uppe.nr. Likely candidates are those epocil cascs fur

which 4, 5, 6, 7, and 8.

l.et us Lest tlt' W( ibul distribution for which f = 4. From Appendix D,



it 1: .i t ( ~i54
2.39 .1 4

1: Wx 11- u x + 3.5(4)(4)

Valu i U ~ L'l (x 1  anld F (x < ( cx) are al,, tiahulated. in
X x i E - 1

Taiblto A. 01hserve thit

O =0.1256. ( .6

AsSwure the siellil ic mo1e lcvCl is set at ax .05. Re-ferring to Appendli:: E,

it is found that

D05 0.409. (147)
10

Since D D.05 ,)a distriba;tion is ouit rejcctud.
ma 10

Ca ,e 2-1.ar ,-N (N > 30):-iu For inr~' values oif :, the, Lt. st is ro rae.It

is present 0(1 liere wi thout proc If . The -, tes,.t proocodcL" ni- foil OWS:

1)Standardize teexperimental (,ab)- Uti7 1-(

2) For the distribut ion under t;, d ivide the rn of X i:-to 10 cell

such that it is equal ly prolba-ble \ will faill into each-* cel. I in the stati-stica i

ltrtreach cell is referred to ais a d-le 1 ( Utcc: I - 1 h 1 o r

some stand! irdized ClI's are tabulated in Appendix F.

3) Count the number of stindardiz''d! daita, x. , ccort a ilo( Wi tl. in1 eChl c1 CC

Denote tao noumber of data in t1he 'Ic th cc l by 1k k 1, 2,....10.

4) Compute the qoantitv 1P k defined bv

p k =1, 2,., 10.(15
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5) Evaluate the statistic

2 10 (Pk - 0.1) 2

X = N k X (0.49)

6. Let M denote the number of parameters in F x), the CDF under test, whose

numerical values must be determined in order for the distribution to be compicwelv

specified. The degrees of freedom are given by P = 10 - 1 - M = 9 - M.

7) Assign a numerical value to the significance level, , defined by (139,.

8) Refer to the Table in Appendix C. Find the tabulated value corres-

ponding to the applicable degrees of freedom, P, and significance level, -.

Denote the tabulated value by ('2)p,*

9) Reject the distribution if "(X-)p

The above discussion is applicable when N > 100. Should 30 < N < 100,

step 2 should be modified such that the range of X is subdivided into 5 eqj.ll

prcbable cells. The cell boundaries can be obtained frcm Appendix F by select ii>:

the 5 intervals (xO , x2 ), (x2 , x4 ), (x4 , X6 ), (x6, x8), and (x8, X1 0 ). The

statistic equi'valent to that in step 5 is now givcn by

.122 5 (P k ~ 0.2
k = N , . 150)

k=l 0,2

Finally, the degrees of freedom specified in step 6 are now given by

P = 5 - 1 - M - 4 - M. All other steps remain the same.

Independent of whether 10 or 5 cells are employed, best results are

obtained when the number of data points in each cell exceeds three.



A: ~ 2 0 : i t i-( t 1 Llnt~ e Cs (I i 11 t, e:-:l Ii L 0 17

(IL r iii i, r L Is IO L V: I iI-)t'u N, thie KcI1m,ur,)v-Smirnov t (:;t

be u-,2d HovL, c r ,L,' to';t wi I Ibe OfJp l iced,. 7, 1  smnil I '.~n :b(., -I

Spec if i L* ill ordule to niethle exampl e m,,ore t rai t ablc . Thn resn. of th

expcr m"Ont alcsnanie in TaO~l B. The szciple Picean is <,ivin I),

20 10.)m.(

The- sample! stnadcJ~viiit n in', Oivcn by

120 ?
C' 1 (..i - Tr< 4 49 5 1 n.(

i= 1

Therefore, the stanilar liZ(2 data are obtained by using

Z- 1007.35

xi 49.51

x. 25 t abulated in Table balong with x . and x 1 Which n-ro needed" inl om-up

the coef ficients of ske ,mess and kurtosis. Since x. hils 7C.1' meanl in.: un it

variance, it



TAB 1. B

3 4

1 966 -.835 -.582 .486

2 976 -.633 -.254 .161

3 1023 .316 .032 .010

4 1038 .619 .237 .147

5 1064 1.144 1.497 1.713

6 1036 .579 .194 .112

7 1035 .558 .174 .097

8 932 -1.522 -3.526 5.366

9 910 -1.966 -7.599 14.939

10 1035 .558 .174 .097

11 978 -.593 -.209 .124

12 950 -1.158 -1.553 1.798

13 1013 .114 .002 .000

14 964 -.876 -.672 .589

15 1091 1.690 4.827 8.157

16 1058 1.023 1.071 1.095

17 1045 .760 .439 .334

18 1043 .720 .373 .269

19 1036 .579 .194 .112

20 954 -1.078 --1.253 1.350

,_ .- - - -
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follows that

20
1 3 --. 377 (154)

i=l1

and

54 (400) 20 x4 (111) 1.945. (155)4 (19)(343) i ' 343

With reference to Appendix C, it would be logical to select the Weibull dis-

tribution. However, let us test the triangular distribution. Because of the

small value of N, let the range of X be subdivided into 5 cells. Referring to

Appendix F, the 5 cells are given by (-2.45j-.900),(-.900,-.25.),(-.259,.259),

(.259,.900), and (.900,2.45). The standardized data in each cell, nk for each cell,

Pkjand (Pk - 0.2) 2 are tabulated in Table C. The X2 statistic becomes,

TABLE C

Cell Number 1 2 3 4 5

Cell intervals (-2.45,-.900) (-.900,-.259) (-.259,.259) (.259,.900) (.900, 2.45)

standardized 3,4,6,7
data in each 8,9,12,20 1,2,11,14 13 10,17,18,19 5,15,16
-ell

nk  4 4 1 8 3

Pk 0.2 0.2 .05 0.4 0.15

(Pk - 0.2)2 0 0 .0225 .04 .0025

according to (150),

2 5 (P k - 0.2)2

X 20 6.53 (156)
k-I 0.2
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Since the triangular distribution contains two parameters, the degrees of

freedom are given by

P -4- M 2. (157)

Assume the significance level is set at a~ 0.05. Referring to Appendix G,

it is found that

2 0.05. (158)

Since 2 > (X 2 0.0 the distribution is rejected.
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10. (,i)N ':.USION AND (( .iW;01' ,

An inherent feature of many 1MC piob I C- iZ, thl, rLil mnn , .. :;m-itid

with the desired ,ncignr:i I , itCering si'nal , and equipmtci)t inat sd. Ill

this work a probabilistic approach is proposed which introduc,. , the fe ,l .in

concepts:

1) FL(S(ils), the given signal and interference EMI preha,bilitv

func t ion,

2) C is(i s) , the given signal and interference ENC probibi Ii tv

func t ion,

3) Cs (s), the given signal EMC probability function,

4) C I(i) , the given interference EMC probability function,

5) C, the ETIC probability (also referred to as the ccmpatibi iity),

6) X (i), the EMI rate function
S

7) Y, the compatibility margin.

Several examples illustrating the interrelationships 'etween thEsc colcept:2

I-re presented.

For problems where a deterministic approach is inapproprijate, thc

probabilistic approach can provide an improved EMC model. In add it ion. 1'v

utilizing statistical parameters, statistical macrom, .c] s can ," d1,, 1.p-!

which simplify the characterization of complex signals and t ic',! .

approach appears to Le especial ly well sui ted for the I11 m c .,

circuits. Because of their tremendou'; complexity, it is ueit, h , 'i I,

possible to carry out an exact circili t modeling and a'; i vi. in tr t,,

determiie EMC.

Central to the probabilistic appreich iS tc liel'ei i,".,

F1 1 s(',Is). A method for detecrn inF, a suitably ; l , , Il;" I I.' ,I



of eqe i pvient! L o be uscd ini th tCexpe r 1 :iwnt *i!; presenflted For nii I vt

reasos i t iS (C de) -)m tob] e LO app rox i iit (' L hi Cxpo In t alI dLote

C11,0) by a well 1 Vlown: distr ibut ion. Some st at lot le a I ttei. I

rej -,rt la ti, -nd id-i L d i -t r ibt I onw; not tupported by tile experiment ii 'ILt

are- d i !cussod .

t I ' rec omu~e iiled tlihot ra uidomnfess a ssoc jo ted wi th ml croc i rci;t>IS

t: i bil1ity be i nve ot Tgtd o what extent is the susceptibility 1 ev, 1_,

random 91,' the ssetiilt level is random, can its PDF be det erm' I

Assu.ming; thle P1W is; known, c:an the probab i .i t: v of E7MC and /or I&M I be suek c, S

fu lt11y (10 e orm i ned .' To de e 1 I p anitswe rs t o theics e que st io n s, it: i s !4igg ed c,;

thle r and om si sc -,p t 1111 i Ii ty o f L hoe if 0 TT NA ND ga t e, a si1mlIe in tel- i it -d

circuit, be stud jed experiment~al ly. I f the study is conclIude i-k Ue( C's!f U 1 1':,

more complicatedl microc ircult.,L shon Id then be invest igated.
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APPENDIX A

C ls(i!s) AND Xs (i) FOR SOME COMON PDF's

In tila appendix, given fL ( cIs), Cs (IIs) and s(i) are derived t.s l! h4

relat ions

C s(ils) = f ( Ps)

c (1)

Ii Is (9

l Uniform Distr ibut ion

-L , a b < Z " + b

LIS -'*s' 0 , o hetiW i 'a.

I , i • , - I,

C l~s(i Is) b :  4 b - ] ,a - , 1 _1 h .

(a ,atL i

A (l) = [ 0 , othtrwi st'

),h (I) [

fu LI ( I s) C ls (ils)

b

2b -

7T ob 6ob01 a-b a o~b i 0 ab 0 04b
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2. Tr i ) ld str j t il

a b- a <b 2 b 2 , a - < .. < a

f"--s) 4 + a-i , a < . < a + b
b

0 otherwise

1 , i<a-b

i [i- (a- b) 1 2
b a -b i aC1 (ils) iabi

I b , a < i a + b

0 , a+b < i

2-_ i - (a -b)

22- [ (a - b)]2 , a -b < i < a

2b -(1 - (a -b)]

ts(i) =, 2, a< a b
S a+b- i , a

0 , otherwise

V22

0 a-b a a+b a-b -a+b I 0 a-b a o+b



jC -

f LIS (1S C*sOl)X

v F~r(F 11

(0) 0 -- 0
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4. 1 og-No rl,f I D i st f ilmL ilO

2

s) -e2o 2u( ' b)

L- - b)l a.b)b)

G~inQ - b) I, bC

c~~~ -i s rc I b < u(Z - b) = b ,

( -b) tcric(- 0 n a) b

f LIS (elS) sO

-bo+b 0 b) + b l- 0 b a+b



7r

5. Laplace Distributiun

a - bl
f L -a-1 e

L~S 2
( -a CD ,- i

Cls(ils) -a(i - b)

, b < i

2e a(b -1) _

S , b i

fus~~~ ~ (Os ~ S Ils) kl

1/2

0 b 0 b i 0i b
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C ) b-

f b i) b

f 11 (fls)

I- s c

a <____________________



S 1c iV I~' 2 I k~ iI -k I'i

f (. ,;) - C

C-)

f LI U ) is i

fc



C) 1*(i

S ai

LISFS ) Ciis(I S) XS (I

0 cc a0 c
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7. i:auILICIV Di tl kr l I

ilsi

I- (~) 2 2

C + (i- -b) tall

0 7r

1122 aiF
_ __t
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$oJam i D .;L ri I) Lt i~mI

Q-c

+ - b ( 1, 0

Pi- c(a +1)
-c
b

i - 1
r(a

c X(i) (

b
(i-c)

a  e b

ks'i ba  1 [(a + 1) - 7 c (a + ]

?(a) ta _ 1 -t
70) 0 e t (Gamma function)

(a) -t e dt (Incomplete GaCmni funct ion)

b 0

f LIS (41 S) (OSSlnr5 a >1) OIS~ls) (a( } ssumes a>l

0 c~ 0. c -bin+0.8) i 0 c
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q. jB j j-it i*l i ![,l

.. . ... L _ - c X- , b
c~a+ b-f ;c f< d, d-c=2?k Oab .-

B(a + 1, b + 1) (d b I - I

G otle rw i ,-e

1 , i < c

B. (a 4 1, b f- 1)

22k

B(-H) U - 1 -- ()-b- , c < i t d
f(i + I, b + b)

o , , b b

(i--a d ( -d0d

bb---

o , ot)rwis

- 1a - - 1 r(a) Fb
B(a,b) - t" (1 - t)

b  
dt =- r~ (Beta function)

0 r(a + b)

B((a,b) f t
a 

- 1 ( - tb- i dt, 0 < C < 1 (Incorpletc TBeta funct (n

0

fus .1s

0 b : i d±.!J._ d~ O'0 C d '0 cd
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Special Case of the Betai Distribution

9.1 a =b = 0 results in the uniform distribution
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APPENDIX B

EXAMPLES OF ANALYTICA1. EXPRESSIONS YOR C S (s)

Given f (LS s) and f (i), he given signal EMC probabiliiV fmujtion ryv 1,LIS

evaluated using

CS) lsis) f i fi d i

f y I s)dy

where C ls(ils) and fYIs (ys) are determined from (3) and (53), rcsptcLji lv.

1. fS(Rls) Uniform and f (i) Uniform

2a' s - a < ;.<s + a

t1
b < j < m 4-1 b

0 , otherwise.
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0 , .- < b-a

(s + zi -4 I - n)
8ab - b m-a s i + b--a

s + a -

C Cs) s +a, m + b -a< s < -- b+ as 2a

a(in + b+ a)2 , b + a < s< + +a

1 + b + a s

Case 2: a < b

0 , s< m- b -a

('3 + a +l)- n) 2 
8ab

cs - b - inC ()2b , U - 1) - a -< s -< m -4 i --. ,

S-+2 ,

8Inb + b - a < s in I[ + a

M 4 8) 4-a < S

... ..... .. ........ U).. . ..... ... ... + 17 -4. . . ..<. ... ....



0 $-Cl s s+cF m-b m ryt~b

cs(S (Cose 1)

0 (rn-b-a) (rn+b-c) mn (m-b+,- '.T.+b+a) s

Cs (s) (Case 2)

0 (rn-b-a') I(m-bs-a) mn (mi-b-a) (r-n+b-Ia)s
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2.~ 1 G > au ;i Il ii ld f (i) (,i;si a i

S2

I( Is r)

126 2

ff LIS I S)- e s

72I/ -7-

0 0 m 0 m s



i

3. 3)l~o bll in~£ i W~ib l ( iL icul IS11bawpo rannot er ,K

Ul) K- 1 u~b

K 11-x
f~ Yi ) - - 0(

c(s.) (Notv that C~ (s~) is indeLpelldrilt of K)

r LIS Cs(s)

Is (_ __I_ _ _ _ _ _ _ __K



3.] ~ ~ I p-t Jy it In

c (s)

1312

0~ I O IT)C
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4. f Uniform and f (i) Causslan

2 , s- a < i< + a

2a2

(i - M)2

f(i) I e 262

V6

CS(s) 6er ( sa ) + + f (s + a - m. _ erf (8-a m)

SC2a 6 erf

- (s-m) 2 + a
2

6 e262 BinS

fLIS (U I S) fl C$ ( S

-j-

0 (S-O) S S+0 O rn 

" I. l-



f LIS(Z s) Weibull anid f (i) Unlforra

fL;S(ZIS) K ( ) K I e
= - s)u(i - s)

2b ' m-b < i< m + b

f0IM,0 otherwise

a
I
/K (-i)n + b 

n K + 
I b -

I

f n (nK + 1) a/K I/K b

C(s) s 4- b -m a , (-1) m + b -s nK + i
S 2b 21 b n n(nK + 1) , m - b /Ks i -- b

a

3 , +b < s

0 0 r-b rn m+b 0: m-b m+b s
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6. f LIS ('i) Weibull and f I(i) Gaussian

- ~ ~ ~ S K )eui-s

LIS~~ils) ~ (Z -)eUi-S

1) 25

f 1U) 
26

)2 K +x2 +-

Cs(s) =erf (* - ) + L e 26 2 e a 26 6 2 x

fus m~s) C5I csis

OF s4 0 m 0S
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APPENDIX C

ANALYTICAL EXPRESSIONS FOR STANDARDIZED PDF's AND THEIR COEFFICIENTS OF SKEWNESS

AND KURTOSIS

PDF ANALYTICAL EXPRESSION C3 t4

fx~
% "  

= ,-/ < x < V

Uniform fx W 27 x< 0 1.80 , "< I X1o .

x I+ 76 -/ X x < 0

Triangular fx) - + - 0 < x < 0 2.4

x 62

Gaussian fx(X) ,1 e 2

_ln(x-b)-ina]
2

fx(x) C/I_ I e 2c2  u(x-b)/'T (x -b)

Log Normal a - (e)C 12 (e C 2  OF 1/2 (eC 2
- i)(e C2+ 2) (e 4C2+ 2e3 C 2

b - -(eC - 1)- /2 +3e 2 c 2 -3)

Special Cases C - 1/4 0.778 4.096
of C - 1/2 1.750 8.898

Log Normal C - 3/4 3.263 26.54

C 1 6.185 113.9

C 2 414.36 9.22 x 106

- -- - - -- - -.. ... . . . .. .. ."L --- . , .
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PDF ANALYTICAL EXPRESSION 3 a4

Laplace f -x(a) 6

(x )

8-1 a
fx) -(x Y) e u(x-y)
x aL

Weibull a- [F(1 ) - r2 (i 2

1

1 1y - r (i +

B - 0.5 6.62 87.72

- 1 2 9

= 2 0.63 3.24

B " 3 0.16 2.73

Special Cases a - 4 -0.09 2.76

of B 5 -0.26 2.91

Vo bull 8 - 6 -0.39 3.09

B * 7 -0.48 3.28

8 " 8 -0.56 3.48

B - 9 -0.63 3.69

B - 10 -0.68 3.92

4i-
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PDF ANALYTICAL EXPRESSION 3_ U4

X - C

fx(X)  a(x - c)U(x c)
r(ar + l)ba+ e

1

Gama b-(a+1) 2  2 3(a + 3)Gum~~ + 1 a+I

c - -(a + 1)1/2

a- 1 1.41 6

a 2 1.16 5

a 3 1 4.s

a 4 0.89 4.2
Special Cases a 5 0.82 4

of a - 6 0.76 3.86
a - 7 0.71 3.75

a - 8 0.67 3.67

a 9 0.63 3.6

a 10 0.60 3.55
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APPENDIX D

ANALYTICAL EXPRESSIONS FOR STANDARDIZED CD?'s

CDF ANALYTICAL EXPRESSION

0 , <
UnfomFxxx+I -VT < z < ,

2V 2 - -II

0 ,x <-,6
Ix 2  x 1

i + + + -,v"< x < 0

Triangular FW(x) - 2
-12 + /r + - 0 < x < /'V "

1 i

t
2

Gausian Fx(x) - .rf(x) - a .'* dt

<i 0

-mx2-, O
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O.F ANALTYICAL EXPRESSION $

F (x) - erft 1 n (x-- b ) lu(x - b)
X C a

Fx( C2 -1/2 I

Log Normal a - [ec 2 (e - 1)]/2

~C - -1/2b = -rec - I-/

C - 1/4; Fx(x) erf[4 inx + 3.9 3 8 )u(x + 3.938)C /4 X() ef4n( 3.817

(x + 1.876
C - 1/2; Fx(x) - erf[2 In ( .656 )]u(x + 1.876)

Special Cases

of C - 3/4; Fx(x) - erf[- In ( O.869 )u(x + 1.151)

Log Normal

C = 1; Fx(x) - erf[in (x + 0.763)]u(x + 0.763)

C a 2; Fx(X) = erf[ in (x + .0 1 37)] u ( x + 0.137)

Gamma Fx W r( + 1'x + a + ) a + 1)

x r(a+ ) u(x++ ))
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CDF ANALYTICAL EXPRESSION

r x (+()0; X(X) =~ j ux + e ))u(x
a 0; F W rV2 + () u(x + 1) [1 e-(x

()r 2x + 2 (2)
a 1; FX(X) (2) u(x + 2)

a 4; i + 5 (5),-,= z FX( = (3) u~x + VJJ

Gamna

rx+ 4 4
a =3; F,,AX) = r(4) -u(x +2).

r/S. (5)
x+a 4; XZ = ,() u(x + v"3)

_ (x Y) 1)

Fx(x) -e C' ]u(x -y)

2 1 8 /W IbulI I + r +)

- -L-..

_ - . .. . ... d .._ . .. , .... N =.
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DF ANALYTICAL EXPRESSION

(x + 0.447)1/2

1/2; Fx(X) - (1 - e 0.473 ]u(x + 0.447)

-(x + 1)
81 ; Fx(X) -[1 - e ]u(x+ 1)

_ (x + 1.913)2

Special Cases 8 - 2 ; x) [1 - e 4.66 ]u(x + 1.913)

of

Weibull ( Cx + 2.759)3

8 3 ; Fx(x) [1 - e 29.445 ]u(x + 2.759)

(x + 3.564)4

8m4 ;Fx(x) - 1- e 239.14 ]u(x + 3.564)



APPEVD1X E

TABLE FOR KOMOGOROV-SM11NO: f j

Sample size Significar.ce levei (a)
(N) .20 .15 .1) .05 .i

1 .900 .925 .950 .975 .995

2 .684 .726 .776 42 .919

3 ,565 .597 .64,2 .70 3

4 .494 .525 .564 .624 .73

5 .446 .474 .5.0 .563 .66')

6 .410 .436 .470 . 57 I 61.

7 .381 .405 .438 .4b6 .577

8 .358 .381 .411 .457 t5o,-

9 .339 .360 .368 .432 .ii4

10 .322 .342 .368 .409 .48-

11 .307 .326 .352 .391 .468

12 .295 -313 .336 .375 .450

13 .284 .302 .2 .361 .433

14 .274 .292 .314 .349 .4!8

15 .266 .283 .304 . -401

16 .258 .274 .295 2 . 9
17 .250 .266 .286 .318 .380

18 .244 .259 .276 .309 .270

19 .237 .252 .272 .301 .361

20 .231 .246 .264 .294 .352

25 .21 .22 .24 .264 .32

30 .19 .20 .22 .242 .29

- - . . .-, . . . . . . ,-- 1
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a 8 a 8 8 8 8

C4 0 -4 m~ c C-4 -4

C-1 C f cpn (n (v c

r-; A ,-4 9 A A

0 IT -S UN %0

-T C4 Vn %0 m ~0
o r -4 n ~0 m%

Cdl C4 %0 0 %0 fODO C4 - '.0 r. w~

Go w

Go % -* r4 0 Ao .o 0

* I* I*Ia * I . 6,
NO -& Q) c i Go -
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MISSION
Of

Rowe Air Development Center
RADC ptan.6 and executes 4eea'Lch, devetopment, te,6t and
46etec-ted acqui~Ltion ptogt'am6 in &iuppo~t o6 Command, Controe

*Communication,6 and Inteigence (C31)I activitiez. TechnicatC
and enginee~ing 6uppott w~thin w~ea" o6 technicat competence
Zi p-tovided to ESP) Ptogu'Lm 0ficez (P04) and otheA ES?)
etement5. The p~incipat technicat miL6,6on aAea.6 ate
communicotion6, etebtomagnet.Ze gudance and con-t't, aut-
veZitnce o6 yztound and ae'Lopace ob ' ect6, in-tettZgence data
cottection and handting, in~o,%mation 6y,6temn technotogy,
iono,6phe.ic p'iopagation, 4otid 4tate 6cience&, micAowktve
phy~~.6i and etectonic tLiabZLZty, maintainabitity and

* comnpatibi"t.




